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Knot Symbols: A Tool to Describe and Simplify 
Knot Diagrams 

M .  B r u s c h i  l 

Received February 6, 1995 

A convenient representation of knot diagrams by abstract symbols is introduced. 
A set of simple moves, which are convenient combinations of the classic 
Reidemeister moves, is also introduced. These moves can be applied directly to 
the symbols to obtain simplified symbols (and therefore simplified diagrams) for 
the knot. 

1. INTRODUCTION 

In recent years there has been a new wave of interest in knot theory 
because of significant mathematical progress and unsuspected connections 
with modem physics (Kauffman, 1991; Lickorish, 1988; Burde and 
Zieschang, 1986; Birman, 1991; Wadati, 1993). Nevertheless the main prob- 
lem in knot theory, simply referred to as the knot problem (Birman, 1991), 
is not yet solved. This problem consists in finding a procedure to decide 
whether two given knots are the same knot (in other words, whether one of 
them can be continuously deformed into the other). Of course we know 
that two knot diagrams (i.e., planar projections of knots) are topologically 
equivalent (they correspond to the same knot) iff one can be obtained from 
the other through a sequence of Reidemeister moves; however, there is no 
constructive way to do this or even to establish if this can be done. 

Remarkable progress has been made with the introduction of more and 
more sophisticated invariants of the knot, namely quantities that do not 
change while deforming the original diagram through the Reidemeister moves 
(Kauffman, 1991; Lickorish, 1988; Burde and Zieschang, 1986; Birman, 
1991); if some invariant is not the same for two knot diagrams, one can say 
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that the two diagrams do not correspond to the same physical knot. On the 
other hand, if it happens (and it can happen also for simple knots) that all 
the known invariants are the same for the two diagrams, nothing can be said. 
Thus, up to now, knot invariants are not the definitive answer to the knot 
problem (we do not have a complete set of invariants). Moreover, the more 
powerful they are (consider, for instance, the HOMFLY Polynomials), the 
more cumbersome their construction becomes. 

In this paper we propose an alternative route, introducing knot symbols, 
a simple but effective tool to treat knot diagrams. In short, we associate with 
a given knot diagram a knot symbol, namely a string of marked letters. Then 
we can apply the Reidemeister moves, or better, new, simple moves that are 
convenient combinations of Reidemeister moves, directly and in a very simple 
way to the knot symbols themselves, obtaining new knot symbols which are 
equivalent to the previous ones (the corresponding diagrams being topologi- 
cally equivalent). 

Moreover, an effective procedure is introduced to obtain from a given 
knot symbol (knot diagram) a new, equivalent one with a lesser (or at least 
not greater) number of letters (crossings). We do not know if the final reduced 
knot symbol that we get when the procedure stops is minimal, i.e., if the 
corresponding reduced diagram is indeed really not further reducible. Never- 
theless, we stress the obvious advantages of obtaining a reduced diagram 
using a procedure which is very fast and can be used very easily by hand 
and in addition can be exploited by computer. Moreover, within bounds 
specified in the following, knot symbols also seem to be a promising tool to 
detect chirality and to distinguish diagrams which have the same 
HOMFLY Polynomial. 

Knot symbols can be considered as a generalization of the notation first 
introduced by Dowker and Thistlethwaite (1983; Thistlethwaite, 1985) (this 
notation was unknown to the author when the first version of this paper was 
written). However, the author thinks that is still worthwhile to present his 
knot symbols to an audience of theoretical physicists for the following reasons: 

• The generalization introduced allows one to handle the problem of 
chirality, and this could be a considerable advantage in physical 
applications of the knot theory. 

• The introduced reduction procedure is simple and effective, and it 
could be profitably used in applications, possibly via computer 
implementation. 

• In this paper a number of problems and difficulties of knot theory 
which are well known to specialists but possibly not to physicists 
are considered and reviewed in the knot symbol notation. 
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In Section 2 we show how to construct the knot symbol corresponding 
to a given knot diagram, then we give some elementary equivalence rules 
between knot symbols and we show how to reconstruct a diagram from a 
knot symbol; in Section 3 we give four simple moves to modify knot symbols 
into equivalent ones; in Section 4 we introduce our procedure to simplify knot 
symbols; in Section 5 we give examples; Section 6 is devoted to final remarks. 

2. KNOT SYMBOLS 

Given an oriented diagram for a knot (Kauffman, 1991) (we use as an 
example diagram F1 in Fig. 1), construct a knot symbol corresponding to 
such a diagram following the following procedure: 

R1. Start from any point of the diagram and reach, following the given 
orientation, the first crossing (in diagram F1 start from O). 

U: the  u n k n o t t e d  
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R2. Assign a letter to the crossing (as a label or "name" for the crossing: 
in FI,  "a" for the first crossing). 

R3. Add this letter to the string which will constitute the knot symbol 
and (a) underline the letter if you are crossing underneath (in FI you are 
crossing over), and (b) put a tilde over the letter if you see the other incoming 
arrow on your left (in F1 you have to put a tilde on the label for the first 
crossing, ~). 

R4. Go on to the next crossing and repeat rules R2 and R3a, b as necessary 
until you reach again the starting point (for the knot in diagram F1 this gives 
the knot symbol S I = 5bcal~ade). 

Note that following the above four rules, no symbol can be constructed 
for the unknotted case, the knot with no crossing (see diagram F0). It is 
convenient to put this as Rule 0: 

R0. The knot symbol corresponding to the "unknotted" case is the null 
knot symbol (an empty string): S(U) = 0 .  

It is also convenient to introduce the following definition: 

DO. In a knot symbol we call a label any letter plus its status with regard 
to underlining and having a tilde; moreover, we call homologous labels two 
labels in a knot symbol with the same letter. 

Example. In S 1, ~ and c are different labels; fi and a are homologous 
labels. 

Remarks. (i) In a knot symbol each letter obviously appears twice; 
moreover, if the first time it is underlined, the second time it is not (and vice 
versa), and if the first time it has a tilde, the second time it has not (and 
vice versa). 

(ii) Many alternative, possibly simpler, notations could be easily devised. 
For computer applications and for extensions to links, a more convenient 
notation seems to be the following: each label is given by the same letter 
with two indices, the first giving by its value the number of the crossing and 
by its sign the status with regard to underlining, the second giving the status 
with regard to whether or not it has a tilde (0,1). Using this notation, the 
knot symbol SI reads 

A(+ I, I )A(+2,0)A(-  3,0)A(-4,  I ) A ( - 2 , 1 ) A ( -  1,0)A(+4,0)A(+3,1) 

(iii) Note the analogies with Kauffman labeling introducing bracket 
polynomials (Kauffman, 1991). 



Knot Symbols 715 

2.1. Elementary Equivalence Rules and Definitions 

A knot symbol should be considered as a representative of a class of 
equivalent symbols that correspond possibly to different diagrams but to the 
same (topological) knot; we give now three elementary rules of equivalence 
(the equivalence between knot symbols will be denoted by ~): 

ER1. Upon replacing a letter in a knot symbol with a different one (not 
already present in the symbol!) or exchanging two letters, we obtain an 
equivalent knot symbol. 

Example. 

S 1: ~.bcabad~ ~ ~.fcafad~ ~ facZ~.fze 

ER2. Knot symbols are cyclic: knot symbols obtained from one another 
by permuting the labels in the string are equivalent. 

Remark. This obviously takes into account the arbitrariness of the choice 
of the starting point. 

Example. 

S l: ~bcabad~ ~ cabad~Ab ~-- ad~bcab 

ER3. Two knot symbols obtained from one another by reversing the 
order of the labels are equivalent. 

Remark. Of course this corresponds to a change in the orientation of 
the knot diagram; this rule should not be considered if one needs to distinguish 
diagrams differing only in the orientation. 

Example. 

SI: ~bcdbad~ ~ ~dabdcb~ 

Now let us introduce some definitions we will use in the following: 

D1. Given a knot symbol, say S, we define its up conjugate S as 
the knot symbol obtained from S by inverting the operation of giving and 
removing tildes. 

Example. 

S: ~bcarad~ ~ S: ar~db~dc 

D2. Given a knot symbol, say S, we define its down conjugate S as the 
knot symbol obtained from S by inverting the "underlining" procedure. 



716 Bruschi 

Example. 

S: ~bcdbad~ ~ S: ~bcdbad~ 

D3. Given a knot symbol, say S, we define its full conjugate S_ as 
the knot symbol obtained from S by inverting the "underlining" and the 
"tilde" operations. 

Example. 

S: fibcabad~ ~ S: aG~db~dc 

Note that the up and the down conjugate knot symbols correspond to 
mirror images of the knot: indeed it is easy to verify that the above up 
conjugate knot symbol S corresponds to diagram Fla  of Fig. 1, which is 
obtained from diagram F1 of Fig. 1 through an inversion along a vertical 
axis and it is just the image of diagram F1 as seen in a mirror orthogonal to 
the plane of the diagram itself, while the down conjugate S corresponds to 
diagram Fib of Fig. 1, which is obtained by switching all the crossings of 
diagram F1 and it is the diagram of the physical knot F1 as viewed on a 
mirror placed below the knot itself. The full conjugate ~ corresponds to the 
diagram of the physical knot F1 turned over on the plane after a 'rr rotation 
in the space (diagrams Flc and Fld of Fig. I). 

Summarizing, a partially conjugate knot symbol corresponds to a mirror 
image of the knot, while the full conjugate knot symbol corresponds to the 
same knot; thus: 

ER4. A knot symbol S and its full conjugate S_ are equivalent: S ~ ~. 

We need some more definitions: 

D4. Two contiguous labels in a knot symbol form a down (up) perma- 
nence P (P) iff they have the same state of underlining (tilding). Moreover, 
a permanence is negative (P - )  if the two letters are not underlined (tilded), 
positive (P+) otherwise. 

Example. In the knot symbol S 1 the letters (a,c) form a P - ;  (c,d) form 
a P+ and also a P - ;  (d,b) form a P+. 

DS. Two contiguous labels which do not form a down (up) permanence 
in a knot symbol form a down (up) alternating; moreover, a knot symbol 
itself without down (up) permanencies is said to be down (up) alternating. 

Remark. Indeed a down alternating knot symbol corresponds to an alter- 
nating knot (Kauffman, 1991). 
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E x a m p l e .  

$2: al~cabe 

(this is a down and up alternating knot symbol that corresponds to the so- 
called t r e f o i l  k n o t ;  see below). 

D6. In a knot symbol two contiguous homologous labels form a n o o s e .  

R e m a r k .  Of course a noose is also an up and down alternating. 

E x a m p l e s :  . . .  ~ x  . . .  ; . . .  ~_y . . .  ; . . .  z ~  . . . .  

D7. In a knot symbol we call a s n a r e  the configuration of two couples 
of homologous labels that form two down permanencies (of course a positive 
and a negative one) and two up aiternatings. 

E x a m p l e s :  . . . x ~  . . . ~ y  . . . ; . . . a b  . . . b a  . . . ; . . . f ~  . . . g f  . . . .  

D8a. In a knot symbol we call a q u a s i - c h a i n  a configuration of three 
couples of  homologous labels that form two down permanencies (of course 
a positive and a negative one) and one down alternating (not a noose). The 
two down permanencies and the down alternating are called l i n k s  of  the 
quasi-chain. 

E x a m p l e s :  

cl  = . . . ~ _ _ ~ _ . . . x ~ . . . z y . . .  

c2 = . . . ~ . . . z y . . . 2 Z . . .  

c3 = . . . ~ y . . . z x . . . ~ _ _ ~ . . .  

c4 = . . . x ~ . . . ~ y . . . ~ z  

D8b. In a quasi-chain we define as the c h a i n  p a r i t y  of a label the number 
n = {(p + t + a) mod 2}, where p = 0 (p = 1) if the label is the first 
(second) in a "link," t = 1 (t = 0) if the letter in the label is (is not) tilded, 
and a = 1 (a = 0) if the label is in a "link" that is (is not) an up alternating. 

E x a m p l e s .  Consider the label _2 in the above quasi-chain c l :  for this 
label we have p = 1, t = 1, a = 1, so that the chain parity is n = (1 + 1 
+ 1) mod 2 = 1; the homologous label has chain parity n = (0 + 0 + 0) 
mod 2 = 0. 

D8c. In a knot symbol we call a c h a i n  a quasi-chain whose homologous 
labels have the same chain parity. 

E x a m p l e s .  It is easy to check that considering the previous examples of 
quasi-chains, only c2 and c3 are chains. 
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Ii ili/!i!il .Ii 
Fig. 2. 

Remark. According to D8c, only the status of tilding distinguishes 
between a chain and a quasi-chain: it is straightforward (if tedious) to check 
that, up to the (here unimportant) ordering of the "links" and taking into 
account the previous equivalence rules, all the tilding configurations admissi- 
ble for a chain reduce to the following two: 

. . . ~ y . . . x z . . . Z . ~ . . . ;  . . . ~ y . . . Z x . . . ~ z . . .  

In other words, a quasi-chain is indeed a chain iff applying the equivalence 
rules it is possible to recover one of the above two tilding configurations (up 
to the order of the "links"). 

I)9. We call a segment a substring s of contiguous labels in the string 
which constitutes the knot symbol S (s C S); a segment containing only 
couples of homologous labels is called an isle. 

Remarks. (a) Of course S itself is an isle; a (nonempty) isle s different 
from S is called a proper isle. 

(b) If the knot symbol S contains a proper isle s, then it contains also 
its complementary isle, that is, the proper isle s' = S - s. 

(c) A diagram with a proper isle can be block-cast as in Fig. 2. 
(d) An isle may contain sub-isles. 

Examples. (a) Consider again S l: 

s I: bcdb 

s2: d~,~ 

s3: cba 

is a segment of S 1 

is a segment of SI (consider ER2) 

is not a segment of S I 
(lack of the contiguity requirement) 

(b) s l, s2, s3 are not isles. 
(c) The knot symbol for the diagram in Fig. 3 contains an isle. 

2.2. The Inverse Problem 

Let us now briefly consider the "inverse problem," i.e., how to recon- 
struct a knot diagram from its knot symbol. Indeed this task can be easily 
accomplished when the symbol is truly a knot symbol, namely if it really 
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0 

,>,v> 

jr,< 
Fig. 3. The knot symbol for this diagram is $3: ~bcdeefedfi~a_bg; with s: cdeeeea~ and s': 

g~a-_bg_~b. Here s is a proper isle and s' is its complementary isle. 

comes from a knot diagram; e.g., let us consider the above knot symbol $2 
= abc~be for the trefoil knot and let us try to construct from it the diagram 
for the trefoil knot itself. 

Let us start from the first letter (a) and try to construct the first crossing: 
we know that this is an under crossing (the first a is underlined); moreover, 
we must see the arrow in the other over crossing line on our right (a is not 
tilded); so we get the diagram in Fig. 4A. We do the same for the next two 
letters b and c (see Fig. 4B); then we have to reach again the letter a entering 
the crossing in the direction indicated by the arrow (see Fig. 4C). Now we 
complete the diagram reaching b, c, and finally a (see Fig. 4D), obtaining 
the diagram of  the trefoil knot or simple knot to the left (see also the following). 
Note that we have a different path to go from c to A yielding the diagram in 
Fig. 5: this different (but topologically equivalent) diagram has the same 
knot symbol and corresponds obviously to the same knot. 

One might wonder if, given an arbitrary string of letters (each letter 
repeated twice and underlined and tilded only once), it is always possible to 

A C 

+ 
B D 

Fig. 4. 
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Fig. 5. 

reconstruct a knot. The answer is obviously . . . . .  no , it is sufficient to give 
a counterexample. 

Consider the knot symbol S: abE~c6; following the previously outlined 
procedure, one can easily reconstruct the knot diagram up to G (see Fig. 6). 
Now it is evidently impossible to reach a without creating a new, unwanted 
crossing. Note that this impossibility is not due to the choice in going, for 
instance, from e to ~, or from ~ to c (try!), and, moreover, it is not due to 
the given orientation (structure of "tilding"): indeed it is easy to see that a 
necessary (but not sufficient) condition for a string to be actually a knot 
symbol is that between two homologous labels there must be an even number 
(2r) of labels (r = 0, 1, 2 . . . .  ). This property is violated in the above example. 
The problem of  what structure of  a knot symbol is admissible is an open 
problem [this problem is solved for Dowker's notation: indeed in this case 
it reduces to the well-known crossing sequence problem (Dowker and Thistle- 
thwaite, 1983)]. 

3. MOVES IN K N O T  S Y M B O L S  

We will give a set of  four moves, i.e., operations that one can perform 
to modify a knot symbol into a new one which corresponds to a different knot 
diagram but to the same topological knot: thus we will introduce nontrivial 

d 

s 

Fig. 6. 

f 
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equivalences between knot symbols. We will illustrate the moves with appro- 
priate diagrams and we will show also how and to what extent our moves 
include the celebrated Reidemeister moves. 

Move etl. Any isle can be moved in any position in the knot symbol 

Remark. This corresponds to a slipping of the isle in the knot. 

Example. Consider the diagram in Fig. 3 with its proper isle and its 
knot symbol $3: _~bI~a~g (here I stands for the proper isle I: cd~efeaf; see 
Fig. 7). 

Using move etl, one can obtain, for instance, S'3: ~b~ab_gI (S'3 -~ $3), 
which corresponds to the new diagram in Fig. 8: this can be done physically 
by slipping the isle through, e.g., b_~. 

Move et2. Any isle can be fully conjugate, independent of the remainder 
of the knot symbol. 

Remark. This corresponds to a "rr rotation in the space of the isle itself 
(see Fig. 9). 

Example. Consider S'3; et2 yields the diagram in Fig. 10: the correspond- 
ing knot symbol is S"3: ~b~a_bgedecf~df (S"3 ~ S'3 ~- $3). 

Remark. One can move an isle Ii inside another isle I2: if I2 is different 
from the complementary isle of It, then I2 is destroyed as an isle, or better, 
a new, bigger isle, say I~, is created with a sub-isle It. 

Move IL The labels of the three "links" of a chain can be commuted. 

Remark. Of course the new quasi-chain is indeed still a chain, because 
by commuting the labels of all the "links" we just invert the chain parity of 
all the labels. 

Examples: 

[i] . . . ~ y . . . Z . ~ . . . x z . . . ~ . . . y , ~ . . . ~ _ _ ~ . . . z x . . .  

[ii] . . . g y _ - . . . y z . . . x _ . ~ . . . ~ . . . y _ - ~ . . . z y . . . ~ x . . .  

[iii] . . . ~ , y . . . i x . . . ~ z . . . ~ y _ _ ~ . . . x ~ . . . z ~ . . .  

This move corresponds to move III of Reidemeister (see Fig. 11A). In terms 
of knot symbols we have for the move in Fig. 11A 

. . .  ~y . . .  z-~ . . .  xz . . .  ~ . . .  x '9 '  . . .  ~'~- . . .  zy' . . .  

Now, with x' = y and y'  = x (ER1), the right-hand side of [i] is recovered. 
Note that the resulting knot symbol is the same if we perform the "physical," 
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Fig. 8. 

( 

. . . . . .  - J -  m 

J ,.~ 

Fig. 9. 

Fig. 10. 

"real" move  in the other two possible ways. Indeed, following the move  in 
Fig. 11B, in terms of  knot symbols  we have 

. . .  ~y . . .  z-.~.. ,  x z . . .  ~ . . .  z'X..._~'y_-' . . .  y ' x . . .  

Setting z '  = y and y '  = z again, we have the r.h.s, o f  [i]. Finally, exploring 
the last possibility in Fig. 11C, in terms of  knot symbols  we have 

. . .  ~y . . .  z - ~ . . ,  xz . . .  ~ . . .  y2 '  . . .  ~._~' . . .  x ' z '  . . .  

Setting z '  = x and x '  = z, the r.h.s, o f  [i] is obtained. 
Now we can add a new (not elementary) equivalence rule between 

knot symbols:  

ER5 .  Two knot symbols  obtained f rom one another through moves  tx 
or 13 are equivalent. 

The moves  ct and 13 do not change the number  o f  letters in the knot 
symbol  (i.e., the number  o f  crossings in the knot diagram) even if the new, 
equivalent, knot symbol  obtained via the moves  looks quite different. On the 
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A 

\ x  y./ 

) 
. . . . . . .  ; :  ) 

mnuelg x' U' 

\ ,  ,7 '  
'X 

F _  . . . . . . . . . . . . .  ~/ • / ) ) 
\ '" ,  z" x NN~ 

, y / x '  

mouelll ~ y z' NN~ 
Fig. 11. 

contrary,  the fo l lowing  two moves  s impl i fy  the knot  symbo l  decreas ing  the 

number  o f  let ters (crossings) .  

M o v e  ~/, In a knot  symbo l  a noose  can be e l imina ted .  

Examples: 

. . .  a b ~ . x ~ f ~ . . .  ~ . . .  ab~.f~ . . .  

. . .  f r y 5 z f i . . .  ~ . . .  frzfi . . . 

This  move cor responds  to Re idemei s t e r  move  I (see Fig.  12): 

. . .  7 . x ~ f . . .  ~ . . .  2 f . . .  

Note,  however ,  that s ince we are interested in s impl i fy ing  knot  symbols ,  we 
do not  cons ider  the inverse  o f  this move,  even if  this cou ld  be done:  indeed,  
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Fig. 12. 

obviously it is possible to insert a noose in an arbitrary position of a knot 
symboi. 

Now the fourth and last move: 

Move S. In a knot symbol a snare can be eliminated. 

Example (see Fig. 13): 

. . . k y g .  . . ~ i '  . . . *  . . . & . . . - s f . .  . 
Note that in the above example we have just used Reidemeister move 

11; however, our move 6 takes into account also the following "physical" 
move (see Fig. 14): 

Note also that the other possible way of performing the "physical" move 
gives the same result. As for our move y and for the same motivations, also 
in this case we do not consider the inverse of the move 6: however, it is 

Fig. 13. 
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X 

t 

Fig. 14. 

important to notice that in this case it is hard to formulate the inverse of 
move ~ in terms of knot symbols (indeed it is easy to check that one cannot 
simply insert arbitrarily a snare in a given knot symbol; see also considerations 
at the end of Section 2). 

Let us now introduce the last (nontrivial) equivalence rule: 

ER6. Two knot symbols obtained from one another through the moves 
~/and ~ are equivalent. 

4. A PROCEDURE TO SIMPLIFY KNOT SYMBOLS 

4.1. The Procedure 

An effective, simple procedure to simplify knot symbols is as follows: 

A. Use the moves ",/and/or 8 (if possible) to simplify. 
B. When the moves % ~ are no longer applicable, identify all the isles 

(and sub-isles) and use the move c~ to separate them. 
C. Inside an isle repeat the steps A, B if possible; otherwise go to D. 
D. Use the move 13 until you can use again A, B, C: if no possible 

move [3 allows you to use again A, B, C, then the isle is called 
locally irreducible. Go to an unprocessed isle, if any, and there start 
the procedure again. 

Obviously when the procedure stops, we have a knot symbol equivalent to 
the starting one but with a smaller (or at least not greater) number of letters; 
from this simplified knot symbol one can reconstruct a diagram for the knot 
with a smaller (not greater) number of crossings• Of course the final knot 
symbol is locally irreducible, i.e,, irreducible with respect to the outlined 
procedure, and one can hope that it is also minimal. By the way it could 
happen that starting from the diagram corresponding to what we call a locally 
irreducible knot symbol for an isle or a knot with, say, N letters (crossings) 
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and using the Reidemeister moves I and II to add crossings, the new diagram 
(symbol) could allow an alternative route to simplify it yielding a final 
diagram (symbol) with N' < N crossings. We will give in the following a 
classical example in which this phenomenon happens using the original set 
of Reidemeister moves (not with our moves!): we were not able to find an 
analogous example for our moves. We do not dare to hope that our procedure 
is powerful enough so that what we call locally irreducible is indeed irreduc- 
ible, but let us hope at least that the first failure that will be found will 
correspond to an irreducible diagram with a high number of crossings (this 
could be enough for practical purposes). 

Remarks. (i) It should be clear from the above considerations that two 
equivalent (in terms of our equivalence rules) knot symbols surely correspond 
to the same topological knot; on the other hand, whenever we speak of 
different, not equivalent knot symbols, they are not equivalent with respect 
to our procedure, but we are not sure that these knot symbols correspond 
indeed to two different knots. 

(ii) It is obvious that for a down alternating knot symbol moves 13 and 
cannot apply (these moves require the presence of down permanencies): 

thus, if also moves ot and ~/ cannot apply, the down alternating is locally 
irreducible. 

(iii) It is worthwhile to notice that a locally irreducible down and up 
alternating knot symbol is not equivalent to its up or down conjugate (mir- 
ror image). 

4.2. Examples 

Now we will give examples of the procedure at work. 
Let us consider the diagram in Fig. 15 and the corresponding knot symbol 

abcaef~rgtgffd~gyZax~s~z 

F 

Fig. 15. 
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We have 13 letters (crossings), and no proper isle. Let us start with step A 
of our procedure: 

• By inspection, no noose is found, so the move ~/is not applicable. 
• To apply ~ we have to look for (double) down permanencies: it is 

easy to identify the snare . . .  g t . . .  s~ . . . .  so we cancel the letters 
s and t using ~. The knot symbol becomes 

ab__S_caef~rg~__d_d~byzaxcyz 

• There is no noose or snare in the above knot symbol, so we go to 
step B. 

• It is possible to identify the isles I~ and Iz containing the sub-isle I3: 

Ii = ~byzaxcy_z~bc; I2 = ae f~ rg f fd  D 13 = e f ~ r g f f  

• Thus we apply a,  obtaining IiddI 3. 
• We are now at step C. We consider first the simple central isle and 

we eliminate the letter d (and the isle as well!) using 3,; we have Iii3. 
• We consider It: A, B give no change, so we try to apply the move 

t3 (step D). We find the chain gb . . .  x 3 . . .  b__c; through move 13 we 
obtain Ii = figy_Za~x_~.z~cb. 

• Now we start again with step A and we use move ",/to eliminate the 
letter b and the move g to eliminate the letters x, y and then a, c, 
getting It = Z.z; through the move ~/ we eliminate also z. Thus the 
knot symbol for this isle reduces to the null symbol (the unknotted). 

• Now we have to consider 13: A, B give no change, so we go to step 
D. A chain, namely ft~ . - .  rg . . .  "_if, is individuated; thus, applying 
the move [3, we get I3 = e_e.~fEgr~-; [step A] using ~/ to cancel the 
letter r and 13 to cancel the letters e, g and finally using again ~/to 
cancel f, we end with a null knot symbol also for this isle: thus we 
have established that the original knot is indeed unknotted. 

We want to stress that, although for the sake of clarity here we were rather 
prolix, the procedure is very fast; however, it may be worthwhile to give 
another example introducing a more concise notation. 

We will use different brackets to delimit patterns of interest, namely [. ] 
for isles; ( . )  for chains; {- } for nooses; ( . )  for snares. 

Now let us consider the knot diagram in Fig. 16 with 16 crossings and 
the corresponding knot symbol 

abZcd~f~ehs~gdfi~vz~tgfi~cuxyaxy 

Let us apply the procedure: 
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Step A: 

abZca~f~ehs~efgdfi(av}zr { gt } gb(,Tu}xga~y 

m o v e s  8 a n d  "V 

> abZcaeff~eh(s~)e~gdfiz(r~)fix.gaXy 

m o v e  "y 

> 5.b~caE ffgehC:f'gdhzbx ~a,~y 

Step B: 

bz[caeff~ehe~gdfilz~[x~ax_-y_a] 

m o v e  c~ 

> [bZzb] [cd~f~ehC: fgdh] [x~a.~y~.] 

Step C. First isle. 
Step A: 

m o v e  8 m o v e  

blzz}~ > Ibm} > 0 

Second isle. Steps A, B: no move is possible, thus (step C) we have to 
go to: 

Step D: 

m o v e  

c(_aE)f(fge)hef(gd)fi > cEdfefghefdgfi 
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Step A: 

move fi move 

Third isle. Steps A, B, C, D: no move is possible. 
The procedure stops; the original knot symbol reduces to the equiva- 

lent x.9~y~. 

These two examples have stressed the efficiency and the handiness of 
our procedure (compare with the amount of work and time required to compute 
knot polynomials for such diagrams or even to obtain the final result applying 
the Reidemeister moves!). 

It is also worthwhile to notice that, by reconstructing the knot diagram 
for the reduced knot symbol of the last example, one gets the diagram in 
Fig. 17 (up to ER1): this is the mirror image of the trefoil knot previously 
considered, namely it is a simple knot to the right (see Sections 2.2 and 5.1). 
It is well known that the trefoil knot is the simplest knotted knot and moreover 
that it is not equivalent to its mirror image [i.e., it is chiral; see Kauffman 
(1991)]. Note that the two corresponding knot symbols are different and 
locally irreducible: thus knot symbols seem to be useful tools to detect 
"'knotness" and chirality: of course this would be rigorous if one could prove 
that local irreducible knot symbols are really irreducible, in other words, that 
starting from an arbitrary knot symbol, the above procedure yields a unique 
result up the equivalence rules ER1-5. 

We end this section by remarking that (a) it is possible to apply the 
above procedure by a simple (and fast) algorithm on a computer and (b) the 
whole scheme could be easily extended to braids and links. 

Fig .  17. 
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5. K N O T  S Y M B O L S  AT W O R K  

5,1. Simple Knots 

First we give the locally irreducible knot symbols for well-known simple 
knots. Let us start for completeness with the two simplest (knotted) knots 
even though we already considered them in Sections 2.2 and 4.2. 

• The trefoil knot or simple knot to the right (see Fig. 17): knot sym- 
bol ~b~abc. 

• The trefoil knot or simple knot to the left (see Fig. 18): knot sym- 
bol abc~b~. 

Note again that this diagram (Fig. 18) is the mirror image of that in 
Fig. 17; the mirror in this case is on the right of the first diagram. The two 
diagrams correspond to different knots [trefoil is chiral (Kauffman, 1991); 
the corresponding knot symbols are locally irreducible and not equivalent, 
each one being equivalent to the up or the down conjugate of the other (see 
considerations in Section 2.1 and at the end of Section 4.2). 

• The ftgure-eight knot (see Fig. 19A): knot symbol ~dcab~db. 

This down alternating knot is known also via the different looking but 
equivalent diagram in Fig. 19B (Kauffman, 1991); the corresponding knot 
symbol is ~_yuvyxvu, which is equivalent to the previous one through ER1 
and ER2. Note how easily we recognize the equivalence of the two diagrams 
using knot symbols (instead of Reidemeister moves). 

Let us now consider the mirror image of the first diagram for the figure- 
eight knot (see Fig. 20a): the corresponding knot symbol is a 'd '~ '~ 'b 'c 'd 'b ' :  
setting a' = d, b' = c, c' = a, d' = b (ERI) and using ER2, we easily 
recover the original knot symbol (note, however, that due to the symmetry 
of the knot, there is also another equivalent setting). 

a 

b 

Fig. 18. 
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A b 

\C 

/ \ 

8 

v 

Fig. 19. 

Thus we have easily found through knot symbols that the figure-eight 
knot is achiral, i.e., it can be continuously deformed into its mirror image. 

This is indeed well known, but the amount of intuition (and work) that 
is necessary to go from one diagram to the other using the Reidemeister 
moves is surprisingly high; here we obtain the result just by looking at the 
two knot symbols. Moreover, the correspondence between the letters of the 
two knot symbols (diagrams) helps enough if one tries to deform physically 
the real, solid knot from one configuration to the other (another not easy 
task) (see Figs. 20A-20F). The above considerations and those in Sections 
2.1 and 4.2 suggest the following criterion to recognize achirality: 

AC. If a knot symbol is equivalent to its up and to its down conjugate, 
then the corresponding knot is achiral. 

Remark. Of course it is convenient to test the equivalence by using a 
locally irreducible expression of the knot symbol. Note also that the possible 
failure in recognizing the equivalence between two knot symbols (see consid- 
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erations in Sections 4 and 6) does not allow us to use fully the above criterion: 
loosely speaking, we can detect achirality, but not chirality. 

For the figure-eight knot symbol the above criterion can be easily applied: 

• Equivalence with the up conjugate: 

ER2 ER I 

al~dbaac ~ acal3~db~ ~ abca6ade 

Equivalence with the down conjugate: 

ER2 ERI ER3 

ab~dbaac ~ ~dbaacab---~bacaabd~-----~ab~dbaac 

• The square knot (see Fig. 21A): knot symbol _~b~__xgz~yZa~c. 

This knot symbol contains two proper isles, namely I1 = x.x_gzXyZ and 
its complementary one: I] = abc~b~: (as is evident also from the diagram in 
Fig. 21A). Note that one isle is the up or the down conjugate of the other; 
then it is clear that the knot symbol is equivalent to its partial conjugate 
(partial conjugation yielding just permutation of the two isles): thus, according 
to the previous criterion, the square knot is achiral. This also is well known: 
however, for completeness, let us exhibit (in Fig. 21B) the mirror image of 
the diagram in Fig. 21A and the corresponding knot symbol: 

a 'b 'c '~ 'y 'Z 'x ' .9 'z '~ 'b '~ '  

This new knot symbol is evidently the up conjugate of the previous one; 
moreover, setting a' = x, b' = y, c' = z, x' = a, y'  = b, z' = c, it is easily 
seen that the two symbols are indeed also completely conjugate and thus 
equivalent (ER4). Indeed it is sufficient to make a "rr rotation in the plane to 
obtain the new diagram from the previous one (this incidentally suggests a 
new identification, namely a' = z, b' = y, c' = x, x' = c, y '  = b, z' = a, 
yielding z_z_~x_x_~b_~c_baZy~, which is equivalent to the original one due to ER2, 
ER3). It is worthwhile to remark that a physical twist ('rr rotation in space) 
of an isle (say I~) in the real knot gives the diagram in Fig. 2 I C: the correspond- 
ing knot symbol ~b~y_Zx2za__bc is immediately seen to be equivalent to the 
original one through the move a2. 

The granny knot (see Fig. 22): knot symbol: ab~xy_z~Zarc. 
Again we have two locally irreducible isles; note also that the knot 

symbol for the granny knot can be obtained from that of the square knot by 
a down partial conjugation of its isle I1: indeed the above diagram is obtained 
from that of the square knot by substitution of its right-hand side with its 
mirror image (from below). It is welt known that this knot is chiral: it is 
satisfying to notice that indeed the knot symbol for the granny knot does not 



~
. 

oo
 

q 
~

T
 

-. 

C
 



736 Bruschi 

Fig, 22. 

satisfy the achirality criterion AC [the knot symbol being up and down 
alternating; see Remark (iii) of Section 4.1]. 

5.2. Hard Knots: Testing the Procedure 

We want now to test the efficiency of  our procedure with some interesting 
knots. Let us start with the classical example of a knot for which there is no 
possibility to reduce the number of crossings through the Reidemeister moves: 
nevertheless the knot is unknotted (indeed, using first in a proper way the 
Reidemeister moves to add crossings, it is possible to reduce the knot to the 
unknotted). The diagram of such knot is shown in Fig. 23 (Lickorish, 1988); 
its knot symbol is abcde_fg~b_b_~f~d~. Following our procedure, we have 

g "-  \ J 1 
Fig. 23. 
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move 6 

ar(cfi)e_fgabe~(de) > a(re)-_fga(be)~ 

move 5 ER2 

> a~gaf~ > (~.a_a)_f(ga)f 

move 5 move 3' 

>I-_if} >Q 

The secret of this success is that our move ~ is not just the Reidemeister 
move II, but includes also a convenient combination of the other Reidemeister 
moves as well. 

Let us now apply our scheme to a knot and its m u t a n t  (see Figs. 24A 
and 24B) (Lickorish, 1988). These two knots have the same (trivial) Alexander 
Polynomial and also the same HOMFLY Polynomial. 

The mutant is obtained by a "rr rotation in the plane of the dotted ball. 
Let us construct now the two knot symbols S for the knot in Fig. 24A and 
SM for the mutant in Fig. 24B: 

S - ~bcx~zurc~yZdbefedaEfvfi 

SM --- .~bcfivabefEdaEf2y~uz~x 

The two knot symbols are locally irreducible: indeed no isle, noose, snare, 
or chain can be found; on the other hand, the two symbols are not equivalent 
via the equivalence rules ERI -4 .  

Let us give another example of two different knots which have the same 
HOMFLY Polynomial but different locally irreducible knot symbols: their 
diagrams are given in Figs. 25A and 25B. The two diagrams have a different 
number of crossings, and consequently the corresponding knot symbols 

f y \ 
m u t a n t  ) 

Fig .  24.  

B 
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A 

". f " \ 
q 

) 
Fig.  25. 

(Sa and Sb, respectively) have a different number of  letters: nevertheless it 
could happen that they reduce to the same knot symbol following our proce- 
dure. Let us examine thus: 

Sa = ~b~defacbagrhh~femfi 

Sb = x.~zurJ~rs~vs-Z_y~qpt~ 

• Sa is down alternating with no isle or noose, thus it is locally 
irreducible. 

• Sb has no isle or noose or snare, but it exhibits a chain, so we can 
apply the move 13: 

x~zu(rvt)rs_Qq(pv)_~Zy~(~t)~ 

m o v e  

> x~zu~rs~qvp~Zy~qt~-r 

Now a different chain is exhibited: 

xy, zu~(rs)G~lV(~)2y~qt(p-r) 

m o v e  13 

> x gzu~rcsnaqvgpZyXqt-rt3 

Again a new chain is generated, so applying the move 13, we get 

xgzu(  c)sr (dv) pzyx(qt)  
move 13 

> x~zu~ct(sr)Qv(~l~_)p2yj, t(qOO 

m o v e  13 

xyzu~rsav~lpZyXt~qp 
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No other move is possible without going back, thus also this knot symbol is 
locally irreducible and moreover it is manifestly not equivalent to the previous 
one through the equivalence rules ER1-4: thus again different knots not 
distinguished by the HOMFLY Polynomials have different locally irreducible 
knot symbols. 

6. CONCLUSIONS 

Let us briefly summarize: the knot symbols are a convenient tool to 
handle the reduction of a knot; give a knot diagram, the starting knot symbol 
is easily constructed through rules R 1-4; manipulating this knot symbol via 
the introduced fast and easy procedure, one gets a final reduced equivalent 
knot symbol that allows one to reconstruct a simplified diagram equivalent 
to the original one but with a smaller or at least not greater number of 
crossings. This diagram is hopefully minimal, but even if this were not true, 
the previous examples should prove the usefulness and manageability of our 
scheme in classifying and simplifying knot diagrams. 

Even if one is working with knot polynomials, one shouM take advantage 
of the possibility of starting with a simplified diagram (a great advantage 
indeed, considering the lengthy procedures needed for the construction of 
knot polynomials). 

It is worthwhile also to remark that our scheme is in a sense dual with 
respect to using invariants (polynomials): indeed this duality is well expressed 
by the following scheme, where K denotes a knot, P(K) an invariant (polyno- 
mial) for the knot, and S(K) the corresponding knot symbol: 

P(K0 =/= P(K2) = >  KI ~ K2 

P(KI) = P(K2) ~ >  Kt = K2 

S(K0 ~ S(K2) ~a> Ki 4= K2 

S(KI) = S(K2) = >  KI = K2 

In other words, different knots can have the same invariant, and equivalent 
knot symbols correspond to the same knot [see Remark (i) of Section 4.1 ]. 
Also, this duality should indicate that the two approaches are not alternatives, 
but could be profitably used together. Finally we mention again that our 
procedure to simplify knot symbols can easily be implemented on a computer 
and that the whole scheme can be extended to more complex objects such 
as braids and links. 
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